Non-autonomous Svinolupov-Jordan KdV systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

jordan c-dynamical systems

in the first chapter we study the necessary background of structure of commutators of operators and show what the commutator of two operators on a separable hilbert space looks like. in the second chapter we study basic property of jb and jb-algebras, jc and jc-algebras. the purpose of this chapter is to describe derivations of reversible jc-algebras in term of derivations of b (h) which are we...

15 صفحه اول

Jordan Manifolds and Dispersionless KdV Equations

Multicomponent KdV-systems are defined in terms of a set of structure constants and, as shown by Svinolupov, if these define a Jordan algebra the corresponding equations may be said to be integrable, at least in the sense of having higher-order symmetries, recursion operators and hierarchies of conservation laws. In this paper the dispersionless limits of these Jordan KdV equations are studied,...

متن کامل

INTEGRABILITY OF A NON-AUTONOMOUS COUPLED KdV SYSTEM

For a better understanding of complicated physical phenomena scientists have experienced that it is necessary to introduce mathematical models whose time evolutions might show some features very similar to those of the original phenomena. These models are usually systems of nonlinear differential equations. These equations can be solved by the use of approximation techniques. But the range of a...

متن کامل

Non-autonomous Hénon-Heiles Systems

Scaling similarity solutions of three integrable PDEs, namely the Sawada-Kotera, fifth order KdV and Kaup-Kupershmidt equations, are considered. It is shown that the resulting ODEs may be written as non-autonomous Hamiltonian equations, which are time-dependent generalizations of the well-known integrable Hénon-Heiles systems. The (time-dependent) Hamiltonians are given by logarithmic derivativ...

متن کامل

Robust stabilization of a class of three-dimensional uncertain fractional-order non-autonomous systems

  This paper concerns the problem of robust stabilization of uncertain fractional-order non-autonomous systems. In this regard, a single input active control approach is proposed for control and stabilization of three-dimensional uncertain fractional-order systems. The robust controller is designed on the basis of fractional Lyapunov stability theory. Furthermore, the effects of model uncertai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 2001

ISSN: 0305-4470,1361-6447

DOI: 10.1088/0305-4470/34/28/306